
   Programming Contest
Distributed Query Engine

Task Description & Preliminary Results
Clément Genzmer, Pierre Senellart

Data distributed over 8 identical nodes, simple SQL queries, the fastest distributed query engine wins!

API to implement

startSlave()

startPretreatmentMaster()

startSlave()

Benchmark Slave Node

Data

Master Node

Data

Slave Node

Data

Initialization phase

createConnection()

Benchmark Slave Node

Data

Master Node

Data

Slave Node

Data

Connection phase

performQuery()

fetchRow()

Benchmark Slave Node

Data

Master Node

Data

Slave Node

Data

Query phase

closeConnection()

closeProcess()

Benchmark Slave Node

Data

Master Node

Data

Slave Node

Data

Closing phase

Workloads
8 distinct (secret) workloads
Selection on value equality, range queries,
projections, natural joins
Up to 150,000 queries per workload
Up to 1,000,000 tuples per node
5 to 10 min allocated per workload

Participants:
29 teams
23 different
institutions
13 different
countries

5 Finalists: (in lexicographic order)
bugboys KAUST
cardinality Stanford U.
dbis TU Kaiserslautern
insa INSA Lyon
spbu Saint-Petersburg U.

 Our implementation is based on a combination of primitives:

 - Select elements based on a primary key or an indexed field

 - Get/Read one file, line by line

 - Insert lines into a hashmap

2X: Pre-hash string

values to avoid

string comparisons

Up to 6X: Use two

one-way sockets

instead of one

two-way socket

2X:Transform table

names and fields

into indexes

 2 types of optimizations

 High level Low Level

Implementation of a distributed query engine over relational data

Andrei Teodorescu, Brice Arnould, Vlad Georgescu, Horia Iancu

National Institute of Applied Sciences, Lyon, France, Department of Computer Science

 Testing techniques

 Test generation Code profiling Network communication monitoring

Reorder tables

Optimize memory consumption and

reduce CPU usage

Compute once

Memorize join results for later use

Change the master node

Avoid communication between nodes

Preprocess table information

Compute min/max values of tables to

avoid duplicate computations

Supported by

